CSM-90T

For $620 \mathrm{~N} / \mathrm{mm}^{2}$ class high tensile strength steel

AWS	A5.29	E90T1-GC
KS	D 7104	YFW-C602M
JIS	Z3313	T622T15-0CA-N2-H10

Applications

Butt, fillet welding of $620 \mathrm{~N} / \mathrm{mm}^{2}$ high tensile strength steels of structure such as ships, bridges, buildings and storage tanks etc.

Characteristics

((1) CSM-90T is a metal type flux cored wire for flat \& horizontal fillet welding with CO_{2} gas shielding.
(2) Its deposition rate is 10~30\% higher compared with a solid wire, so total cost is saved.
(3) It provides excellent usability with stable arc, less spattering better bead appearance and less quantity of welding fume comparable to solid wire.

Notes on usage

(1) The optimum flow of CO_{2} for shielding is 20~25 ℓ / min.
(2) The distance between tip \& base metal is to be $15 \sim 25 \mathrm{~mm}$.
(3) Protect the weld with a screen to prevent blowholes caused by wind where the wind velocity is $2 \mathrm{~m} / \mathrm{sec}$ and more.
(4) Thick heavy plate should be welded under proper preheating \& interpass temperature.

Typical chemical composition of weld metal (\%) (Shielding gas : $100 \% \mathrm{CO}_{2}$)

C	Mn	Si	P	S	Ni	Mo
0.06	1.60	0.65	0.014	0.012	0.89	0.16

Typical mechanical properties of weld metal

(Shielding gas : $100 \% \mathrm{CO}_{2}$)

$\begin{gathered} \mathrm{YP} \\ \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{TS} \\ \mathrm{~N} / \mathrm{mm}^{2}(\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { EL } \\ \% \end{gathered}$	IV (J)	
			$-20^{\circ} \mathrm{C}$	$-30^{\circ} \mathrm{C}$
584	693	24.0	56	47

Size \& recommended current range ($\mathrm{DC}+$)

Dia. mm (in)		$1.2(0.045)$	$1.4(0.052)$	$1.6(0.062)$
Amp.	F \& H-F	$180 \sim 340$	$200 \sim 360$	$200 \sim 400$

